The industrial revolution in Britain came in to introduce machines into production by the end of the 18th century (1760-1840). This included going from manual production to the use of steam-powered engines and water as a source of power.
This helped agriculture greatly and the term “factory” became a little popular. One of the industries that benefited a lot from such changes is the textile industry, and was the first to adopt such methods. It also constituted a huge part of the British economy at the time.
The second one dates between 1870 and 1914 (although some of its characteristics date back to the 1850) and introduced pre-existing systems such as telegraphs and railroads into industries. Perhaps the defining characteristic of that period was the introduction of mass production as a primary means to production in general.
The electrification of factories contributed hugely to production rates. The mass production of steel helped introduce railways into the system, which consequently contributed to mass production. Innovations in chemistry, such as the invention of the synthetic dye, also mark such period as chemistry was in a rather primitive state then.
However, such revolutionary approaches to industry were put to an end with the start of World War I. Mass production, of course, was not put to an end, but only developments within the same context were made and none of which can be called industrial revolutions.
Perhaps the third one is much more familiar to us than the rest as most people living today are familiar with industries leaning on digital technologies in production. However, the third industrial revolution is dated between 1950 and 1970.
It is often referred to as the Digital Revolution, and came about the change from analog and mechanical systems to digital ones.
Others call it the Information Age too. The third revolution was, and still is, a direct result of the huge development in computers and information and communication technology.
In the past few decades, a fourth industrial revolution has emerged, known as Industry 4.0. Industry 4.0 takes the emphasis on digital technology from recent decades to a whole new level with the help of interconnectivity through the Internet of Things (IoT), access to real-time data, and the introduction of cyber-physical systems.
Industry 4.0 offers a more comprehensive, interlinked, and holistic approach to manufacturing. It connects physical with digital, and allows for better collaboration and access across departments, partners, vendors, product, and people. Industry 4.0 empowers business owners to better control and understand every aspect of their operation, and allows them to leverage instant data to boost productivity, improve processes, and drive growth.
We’re in the midst of a significant transformation regarding the way we produce products thanks
to the digitization of manufacturing. This transition is so compelling that it is being called
Industry 4.0 to represent the fourth revolution that has occurred in manufacturing. From the
first industrial revolution (mechanization through water and steam power) to the mass production
and assembly lines using electricity in the second, the fourth industrial revolution will take
what was started in the third with the adoption of computers and automation and enhance it with
smart and autonomous systems fuelled by data and machine learning.
Even though some dismiss Industry 4.0 as merely a marketing buzzword, shifts are happening in
manufacturing that deserves our attention.
When computers were introduced in Industry 3.0, it was disruptive thanks to the addition of an entirely new technology. Now, and into the future as Industry 4.0 unfolds, computers are connected and communicate with one another to ultimately make decisions without human involvement. A combination of cyber-physical systems, the Internet of Things and the Internet of Systems make Industry 4.0 possible and the smart factory a reality.
As a result of the support of smart machines that keep getting smarter as they get access to more data, our factories will become more efficient and productive and less wasteful. Ultimately, it's the network of these machines that are digitally connected with one another and create and share information that results in the true power of Industry 4.0.
While many organizations might still be in denial about how Industry 4.0 could impact their business or struggling to find the talent or knowledge to know how to best adopt it for their unique use cases, several others are implementing changes today and preparing for a future where smart machines improve their business. Here are just a few of the possible applications:
Optimize logistics and supply chains: A connected supply chain can adjust and accommodate when new information is presented. If a weather delay ties up a shipment, a connected system can proactively adjust to that reality and modify manufacturing priorities.
There are shipping yards that are leveraging autonomous cranes and trucks to streamline operations as they accept shipping containers from the ships.
Once only possible for large enterprises with equally large budgets, robotics are now more affordable and available to organizations of every size. From picking products at a warehouse to getting them ready to ship, autonomous robots can quickly and safely support manufacturers. Robots move goods around Amazon warehouses and also reduce costs and allow better use of floor space for the online retailer.
This technology has improved tremendously in the last decade and has progressed from primarily being used for prototyping to actual production. Advances in the use of metal additive manufacturing have opened up a lot of possibilities for production.
A key component of Industry 4.0 is the Internet of Things that is characterized by connected devices. Not only does this help internal operations, but through the use of the cloud environment where data is stored, equipment and operations can be optimized by leveraging the insights of others using the same equipment or to allow smaller enterprises access to technology they wouldn’t be able to on their own.
While Industry 4.0 is still evolving and we might not have the complete picture until we look back 30 years from now, companies who are adopting the technologies realize Industry 4.0's potential. These same companies are also grappling with how to upskill their current workforce to take on new work responsibilities made possible by Internet 4.0 and to recruit new employees with the right skills.